In [1]:
%pylab nbagg
from tvb.simulator.lab import *
import numpy
import tvb.datatypes.projections as projections
from scipy import io
Populating the interactive namespace from numpy and matplotlib
   INFO  log level set to INFO
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.wilson_cowan.WilsonCowan.state_variable_range = Final(field_type=<class 'dict'>, default={'E': array([0., 1.]), 'I': array([0., 1.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.stefanescu_jirsa.ReducedSetFitzHughNagumo.state_variable_range = Final(field_type=<class 'dict'>, default={'xi': array([-4.,  4.]), 'eta': array([-3.,  3.]), 'alpha': array([-4.,  4.]), 'beta': array([-3.,  3.])}, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.stefanescu_jirsa.ReducedSetHindmarshRose.a = NArray(label=':math:`a`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 3.0 
   attribute  tvb.simulator.models.stefanescu_jirsa.ReducedSetHindmarshRose.b = NArray(label=':math:`b`', dtype=float64, default=array([3.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.stefanescu_jirsa.ReducedSetHindmarshRose.c = NArray(label=':math:`c`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 3.3 
   attribute  tvb.simulator.models.stefanescu_jirsa.ReducedSetHindmarshRose.mu = NArray(label=':math:`\\mu`', dtype=float64, default=array([3.3]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.stefanescu_jirsa.ReducedSetHindmarshRose.state_variable_range = Final(field_type=<class 'dict'>, default={'xi': array([-4.,  4.]), 'eta': array([-25.,  20.]), 'tau': array([ 2., 10.]), 'alpha': array([-4.,  4.]), 'beta': array([-20.,  20.]), 'gamma': array([ 2., 10.])}, required=True)
WARNING  default contains values out of the declared domain. Ex 0.12 
   attribute  tvb.simulator.models.jansen_rit.JansenRit.p_min = NArray(label=':math:`p_{min}`', dtype=float64, default=array([0.12]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 0.32 
   attribute  tvb.simulator.models.jansen_rit.JansenRit.p_max = NArray(label=':math:`p_{max}`', dtype=float64, default=array([0.32]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 0.22 
   attribute  tvb.simulator.models.jansen_rit.JansenRit.mu = NArray(label=':math:`\\mu_{max}`', dtype=float64, default=array([0.22]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.jansen_rit.JansenRit.state_variable_range = Final(field_type=<class 'dict'>, default={'y0': array([-1.,  1.]), 'y1': array([-500.,  500.]), 'y2': array([-50.,  50.]), 'y3': array([-6.,  6.]), 'y4': array([-20.,  20.]), 'y5': array([-500.,  500.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.jansen_rit.ZetterbergJansen.state_variable_range = Final(field_type=<class 'dict'>, default={'v1': array([-100.,  100.]), 'y1': array([-500.,  500.]), 'v2': array([-100.,   50.]), 'y2': array([-100.,    6.]), 'v3': array([-100.,    6.]), 'y3': array([-100.,    6.]), 'v4': array([-100.,   20.]), 'y4': array([-100.,   20.]), 'v5': array([-100.,   20.]), 'y5': array([-500.,  500.]), 'v6': array([-100.,   20.]), 'v7': array([-100.,   20.])}, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.oscillator.Generic2dOscillator.gamma = NArray(label=':math:`\\gamma`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.oscillator.Generic2dOscillator.state_variable_range = Final(field_type=<class 'dict'>, default={'V': array([-2.,  4.]), 'W': array([-6.,  6.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.oscillator.Kuramoto.state_variable_range = Final(field_type=<class 'dict'>, default={'theta': array([0.        , 6.28318531])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.oscillator.supHopf.state_variable_range = Final(field_type=<class 'dict'>, default={'x': array([-5.,  5.]), 'y': array([-5.,  5.])}, required=True)
WARNING  default contains values out of the declared domain. Ex -0.01 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.TCa = NArray(label=':math:`T_{Ca}`', dtype=float64, default=array([-0.01]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 0.3 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.TNa = NArray(label=':math:`T_{Na}`', dtype=float64, default=array([0.3]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 2.0 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.aei = NArray(label=':math:`a_{ei}`', dtype=float64, default=array([2.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 2.0 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.aie = NArray(label=':math:`a_{ie}`', dtype=float64, default=array([2.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.ane = NArray(label=':math:`a_{ne}`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 0.3 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.Iext = NArray(label=':math:`I_{ext}`', dtype=float64, default=array([0.3]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.QV_max = NArray(label=':math:`Q_{max}`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.QZ_max = NArray(label=':math:`Q_{max}`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.larter_breakspear.LarterBreakspear.t_scale = NArray(label=':math:`t_{scale}`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.larter_breakspear.LarterBreakspear.state_variable_range = Final(field_type=<class 'dict'>, default={'V': array([-1.5,  1.5]), 'W': array([-1.5,  1.5]), 'Z': array([-1.5,  1.5])}, required=True)
WARNING  default contains values out of the declared domain. Ex 0.27 
   attribute  tvb.simulator.models.wong_wang.ReducedWongWang.a = NArray(label=':math:`a`', dtype=float64, default=array([0.27]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.wong_wang.ReducedWongWang.state_variable_range = Final(field_type=<class 'dict'>, default={'S': array([0., 1.])}, required=True)
WARNING  default contains values out of the declared domain. Ex 10.0 
   attribute  tvb.simulator.models.wong_wang_exc_io_inh_i.ReducedWongWangExcIOInhI.tau_i = NArray(label=':math:`\\tau_i`', dtype=float64, default=array([10.]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.wong_wang_exc_io_inh_i.ReducedWongWangExcIOInhI.state_variable_range = Final(field_type=<class 'dict'>, default={'S_e': array([0., 1.]), 'S_i': array([0., 1.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.linear.Linear.state_variable_range = Final(field_type=<class 'dict'>, default={'x': array([-1,  1])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.hopfield.Hopfield.state_variable_range = Final(field_type=<class 'dict'>, default={'x': array([-1.,  2.]), 'theta': array([0., 1.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.epileptor.Epileptor.state_variable_range = Final(field_type=<class 'dict'>, default={'x1': array([-2.,  1.]), 'y1': array([-20.,   2.]), 'z': array([2., 5.]), 'x2': array([-2.,  0.]), 'y2': array([0., 2.]), 'g': array([-1.,  1.])}, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.epileptor.Epileptor2D.tt = NArray(label='tt', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.epileptor.Epileptor2D.state_variable_range = Final(field_type=<class 'dict'>, default={'x1': array([-2.,  1.]), 'z': array([2., 5.])}, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.models.JCepileptor.JC_Epileptor.gamma_rs = NArray(label=":math:'\\gamma_rs'", dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.JCepileptor.JC_Epileptor.state_variable_range = Final(field_type=<class 'dict'>, default={'x1': array([-1.8, -1.4]), 'y1': array([-15, -10]), 'z': array([3.6, 4. ]), 'x2': array([-1.1, -0.9]), 'y2': array([0.001, 0.01 ]), 'g': array([-1.,  1.]), 'x_rs': array([-2.,  4.]), 'y_rs': array([-6.,  6.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.epileptorcodim3.EpileptorCodim3.state_variable_range = Final(field_type=<class 'dict'>, default={'x': array([0.4, 0.6]), 'y': array([-0.1,  0.1]), 'z': array([0.  , 0.15])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.epileptorcodim3.EpileptorCodim3SlowMod.state_variable_range = Final(field_type=<class 'dict'>, default={'x': array([0.4, 0.6]), 'y': array([-0.1,  0.1]), 'z': array([0. , 0.1]), 'uA': array([0., 0.]), 'uB': array([0., 0.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.Zerlaut.Zerlaut_adaptation_first_order.state_variable_range = Final(field_type=<class 'dict'>, default={'E': array([0. , 0.1]), 'I': array([0. , 0.1]), 'W': array([  0., 100.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.simulator.models.Zerlaut.Zerlaut_adaptation_second_order.state_variable_range = Final(field_type=<class 'dict'>, default={'E': array([0. , 0.1]), 'I': array([0. , 0.1]), 'C_ee': array([0., 0.]), 'C_ei': array([0., 0.]), 'C_ii': array([0., 0.]), 'W': array([  0., 100.])}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class 'dict'>, default={}, required=True)
WARNING  Field seems mutable and has a default value. Consider using a lambda as a value factory 
   attribute tvb.datatypes.projections.ProjectionMatrix.conductances = Attr(field_type=<class 'dict'>, default={'air': 0.0, 'skin': 1.0, 'skull': 0.01, 'brain': 1.0}, required=False)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.coupling.HyperbolicTangent.b = NArray(label=':math:`b`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
WARNING  default contains values out of the declared domain. Ex 1.0 
   attribute  tvb.simulator.coupling.Kuramoto.a = NArray(label=':math:`a`', dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)

Tutorial: Evoked Responses in the Visual Cortex

Set up a Connectivity and its attributes.

In [2]:
conn = connectivity.Connectivity.from_file()
conn_coupling = coupling.Linear(a=numpy.array([0.042]))
WARNING  File 'hemispheres' not found in ZIP.

Set up a model.

In this configuration the topology of the phase portrait features a stable fixed point (a stable spiral) with a characteristics frequency of approximately 10Hz. You can check it using the nice phase_plane_interactive tool ...

In [3]:
mod = models.Generic2dOscillator(a=numpy.array([-0.5]), b=numpy.array([-15.0]), c=numpy.array([0.0]), d=numpy.array([0.02]))

Choose an integration scheme (noise or not?).

Selecting a deterministic integration scheme allows you to observe very clearly the effect of stimulation-driven activity. With a stochastic scheme, you may observe some neural reponses which are not due to stimulation but to noise fluctuations (uncontrolled reponses of the resting state).

In [4]:
hiss    = noise.Additive(nsig = numpy.array([0.015]))
heunint = integrators.HeunStochastic(dt=2**-6, noise=hiss)

Build a Stimulus

In TVB's connectivity demo dataset region 35 and 36 represent areas V1 and V2 respectively in the left hemisphere.

In [5]:
conn.configure()
nodes = [35, 36] 
stim_weights = numpy.zeros((conn.number_of_regions, 1))
stim_weights[nodes] = numpy.array([3.5, 0.0])[:, numpy.newaxis]
eqn_t = equations.PulseTrain()
eqn_t.parameters["onset"] = 500.0 # ms
eqn_t.parameters["tau"]   = 5.0   # ms
eqn_t.parameters["T"]     = 500.  # 0.002kHz repetition frequency

stimulus = patterns.StimuliRegion(temporal = eqn_t,
                                  connectivity = conn, 
                                  weight = stim_weights)
    

Record the ouput as:

  • Temporal Averaged time-series. By default only the first state variable is recorded for the Generic2dOscillator model.

  • EEG (FIXME. By default pr = projections.ProjectionRegionEEG() should do all the tricks)

In [6]:
pr = projections.ProjectionSurfaceEEG.from_file()
ss = sensors.SensorsEEG.from_file(source_file="eeg_brainstorm_65.txt")
rm = region_mapping.RegionMapping.from_file()
In [7]:
rec = (monitors.TemporalAverage(period=1e3 / 2048.), 
       monitors.EEG(projection=pr, sensors=ss, region_mapping=rm, period=1e3/2048.))

Create a Simulator instance.

In [8]:
def config_sim(stim=None):
    sim = simulator.Simulator(model = mod, 
                          connectivity = conn,
                          coupling = conn_coupling, 
                          integrator = heunint, 
                          monitors = rec,
                          stimulus = stim)
                    
    sim.configure()
    return sim

Create a run function to perform the simulation

In [9]:
def run_simulation(sim):
    #Perform the simulation
    tavg_data = []
    tavg_time = []
    eeg_data = []
    eeg_time = []
    for tavg, eeg in sim(simulation_length=2**10):
    # approx 4 sec
        if not tavg is None:
            tavg_time.append(tavg[0])
            tavg_data.append(tavg[1])
            
        if not eeg is None:
            eeg_time.append(eeg[0])
            eeg_data.append(eeg[1])
            
    return (tavg_data, tavg_time, eeg_data, eeg_time)

Results

A. Activity in the absence of stimulation

In [10]:
sim = config_sim()
out = run_simulation(sim)
In [11]:
TAVG = numpy.array(out[0])
tt   = numpy.array(out[1])
EEG  = numpy.array(out[2])
In [12]:
figure()

subplot(211)
plot(tt, TAVG[:, 0, nodes, 0])
title("Temporal Averaged time-series")

subplot(212)
plot(tt, EEG[:, 0, 60, 0], 'k')
title("EEG")

tight_layout()

Figure 1: TAVG and EEG traces (0z) resting state

B. Stimulus-driven activity

In [13]:
sim = config_sim(stim=stimulus)
stout = run_simulation(sim)
In [14]:
STAVG = numpy.array(stout[0])
stt   = numpy.array(stout[1])
SEEG  = numpy.array(stout[2])
In [15]:
figure()

subplot(211)
plot(stt, STAVG[:, 0, nodes, 0])
title("Stim - Temporal Averaged time-series")

subplot(212)
plot(stt, SEEG[:, 0, 60, 0], 'k')
title("Stim - EEG")
Out[15]:
Text(0.5, 1.0, 'Stim - EEG')

Figure 2: TAVG and EEG traces (0Z) under stimulation -- onset is @ 500 ms

In [ ]: